關(guān)于有理數(shù)的加減乘除混合運(yùn)算練習(xí)題,有理數(shù)的加減法教案這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、教學(xué)目標(biāo)1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉(zhuǎn)化,會進(jìn)行加減混合運(yùn)算;2.通過學(xué)習(xí)一切加減法運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想;3.通過加法運(yùn)算練習(xí),培養(yǎng)學(xué)生的運(yùn)算能力。
2、教學(xué)建議(一)重點(diǎn)、難點(diǎn)分析本節(jié)課的重點(diǎn)是依據(jù)運(yùn)算法則和運(yùn)算律準(zhǔn)確迅速地進(jìn)行有理數(shù)的加減混合運(yùn)算,難點(diǎn)是省略加號與括號的代數(shù)和的計(jì)算.由于減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,所以加減混合運(yùn)算實(shí)際上就是有理數(shù)的加法運(yùn)算。
3、了解運(yùn)算符號和性質(zhì)符號之間的關(guān)系,把任何一個含有有理數(shù)加、減混合運(yùn)算的算式都看成和式,這是因?yàn)橛欣頂?shù)加、減混合算式都看成和式,就可靈活運(yùn)用加法運(yùn)算律,簡化計(jì)算.(二)知識結(jié)構(gòu)(三)教法建議1.通過習(xí)題,復(fù)習(xí)、鞏固有理數(shù)的加、減運(yùn)算以及加減混合運(yùn)算的法則與技能,講課前教師要認(rèn)真總結(jié)、分析學(xué)生在進(jìn)行有理數(shù)加、減混合運(yùn)算時常犯的錯誤,以便在這節(jié)課分析習(xí)題時,有意識地幫助學(xué)生改正.2.關(guān)于“去括號法則”,只要學(xué)生了解,并不要求追究所以然.3.任意含加法、減法的算式,都可把運(yùn)算符號理解為數(shù)的性質(zhì)符號,看成省略加號的和式。
4、這時,稱這個和式為代數(shù)和。
5、再例如-3-4表示-3、-4兩數(shù)的代數(shù)和,-4+3表示-4、+3兩數(shù)的代數(shù)和,3+4表示3和+4的代數(shù)和等。
6、代數(shù)和概念是掌握有理數(shù)運(yùn)算的一個重要概念,請老師務(wù)必給予充分注意。
7、4.先把正數(shù)與負(fù)數(shù)分別相加,可以使運(yùn)算簡便。
8、5.在交換加數(shù)的位置時,要連同前面的符號一起交換。
9、如12-5+7應(yīng)變成12+7-5,而不能變成12-7+5。
10、教學(xué)目標(biāo)1.理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算;2.通過把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,向?qū)W生滲透轉(zhuǎn)化思想,通過有理數(shù)的減法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力.3.通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想.教學(xué)建議(一)重點(diǎn)、難點(diǎn)分析本節(jié)重點(diǎn)是運(yùn)用有理數(shù)的減法法則熟練進(jìn)行減法運(yùn)算。
11、解有理數(shù)減法的計(jì)算題需嚴(yán)格掌握兩個步驟:首先將減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,然后依據(jù)有理數(shù)加法法則確定所求結(jié)果的符號和絕對值.理解有理數(shù)的減法法則是難點(diǎn),突破的關(guān)鍵是轉(zhuǎn)化,變減為加.學(xué)習(xí)中要注意體會:小學(xué)遇到的小數(shù)減大數(shù)不會減的問題解決了,小數(shù)減大數(shù)的差是負(fù)數(shù),在有理數(shù)范圍內(nèi),減法總可以實(shí)施.(二)知識結(jié)構(gòu)(三)教法建議1.教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法.有理數(shù)的加法和減法,當(dāng)引進(jìn)負(fù)數(shù)后就可以統(tǒng)一用加法來解決.2.不論減數(shù)是正數(shù)、負(fù)數(shù)或是零,都符合有理數(shù)減法法則.在使用法則時,注意被減數(shù)是永不變的.3.因?yàn)槿魏螠p法運(yùn)算都可以統(tǒng)一成加法運(yùn)算,所以我們沒有必要再規(guī)定幾個帶有減法的運(yùn)算律,這樣有利于知識的鞏固和記憶.4.注意引入負(fù)數(shù)后,小的數(shù)減去大的數(shù)就可以進(jìn)行了,其差可用負(fù)數(shù)表示。
12、教學(xué)目標(biāo)1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運(yùn)算法則;2.能根據(jù)有理數(shù)加法法則熟練地進(jìn)行有理數(shù)加法運(yùn)算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;3.三個或三個以上有理數(shù)相加時,能正確應(yīng)用加法交換律和結(jié)合律簡化運(yùn)算過程;4.通過有理數(shù)加法法則及運(yùn)算律在加法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實(shí)例說明如何運(yùn)用法則和運(yùn)算律,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
13、教學(xué)建議(一)重點(diǎn)、難點(diǎn)分析本節(jié)教學(xué)的重點(diǎn)是依據(jù)有理數(shù)的加法法則熟練進(jìn)行有理數(shù)的加法運(yùn)算。
14、難點(diǎn)是有理數(shù)的加法法則的理解。
15、(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學(xué)生了解法則的合理性。
16、(2)具體運(yùn)算時,應(yīng)先判別題目屬于運(yùn)算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
17、(3)如果是同號相加,取相同的符號,并把絕對值相加。
18、如果是異號兩數(shù)相加,應(yīng)先判別絕對值的大小關(guān)系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。
19、一個數(shù)與0相加,仍得這個數(shù)。
20、(二)知識結(jié)構(gòu)(三)教法建議1.對于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運(yùn)算以及正負(fù)數(shù)、相反數(shù)、絕對值等知識。
21、2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
22、3.應(yīng)強(qiáng)調(diào)加法交換律“a+b=b+a”中字母a、b的任意性。
23、4.計(jì)算三個或三個以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運(yùn)算習(xí)慣。
24、不要盲目動手,應(yīng)該先仔細(xì)觀察式子的特點(diǎn),深刻認(rèn)識加數(shù)間的相互關(guān)系,找到合理的運(yùn)算步驟,再適當(dāng)運(yùn)用加法交換律和結(jié)合律可以使加法運(yùn)算更為簡化。
25、5.可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負(fù)數(shù)參與加法運(yùn)算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運(yùn)算中未必也成立。
26、6.在探討導(dǎo)出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學(xué)的作用。
27、用動畫演示人或物體在同一直線上兩次運(yùn)動的過程,讓學(xué)生更好的理解有理數(shù)運(yùn)算法則。
本文分享完畢,希望對大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!