重慶市體彩中心服務(wù)大廳怎么樣(重慶市體彩中心) 怎么做涼拌萵筍絲(怎么做涼拌萵筍絲視頻) 易烊千璽TFBOYS同款手鏈(易烊千璽項鏈同款) 如何去掉磁盤被寫保護?(怎么去掉磁盤被寫保護) 圈養(yǎng)羊怎么養(yǎng)#校園分享#(圈養(yǎng)羊怎么養(yǎng)視頻) 制訂和制定有什么區(qū)別呢(制訂和制定有什么區(qū)別) 胃疼怎么辦 胃疼怎樣快速止疼(胃一直疼怎么快速止疼) 動力臂和阻力臂的畫法(動力臂) 《小小部隊》攻略:打開任務(wù)地圖(小兵經(jīng)驗區(qū)) 打女友犯法嗎(打女友屁股) 電話會議怎么開(電視電話會議怎么開) 家裝水電改造方法(家裝水電改造方法和步驟) 迪拜首富李凡(迪拜首富) 空調(diào)怎么改成井水空調(diào)(空調(diào)怎么改成井水空調(diào)制熱) dnf創(chuàng)世之書4-4怎么過(DNF創(chuàng)世之書4-4怎么過最新) 赤井秀一喜歡安室透(赤井秀一喜歡誰) 如何去掉開機需要按Ctrl+Alt+Del?(怎樣去掉開機啟動項) 小核桃的功效與作用(小核桃的功效與作用及禁忌) 陶瓷地磚規(guī)格(地磚規(guī)格) 冒險島2狂戰(zhàn)士加點攻略(冒險島2狂戰(zhàn)士加點攻略2020) 終日乾乾與時偕行的意思(終日乾乾與時偕行) iPhone自動切換壁紙怎么開啟(蘋果怎么自動切換壁紙) 元始天尊徒弟(元始天尊的徒弟排名) 深入太極八卦《武神》江湖第一道學(xué)副本(江湖風(fēng)云錄九陰真經(jīng),北冥神功) 女媧是怎么來到人世的(女媧是怎么死的) 如何把FLV轉(zhuǎn)換成RMVB(怎么轉(zhuǎn)換成flv) word文件擴展名是什么(word的文件擴展名是什么) 南京審計學(xué)院就業(yè)前景(南京審計學(xué)院) 韓式一字眉修飾技巧(韓式一字眉修飾技巧圖片) 微信小游戲猜歌達人451-500關(guān)答案 騎行圈大神(騎行圈論壇) 中年人如何補鈣(中年人如何補鈣維生素AD膠丸) AKG K3003 評測(akgk3003評測視頻) 邊坡比是什么意思(邊坡比) 忍不住虐狗怎么辦?(忍不住虐狗怎么辦知乎) 靈魂潮汐黃昏暮會瑪蒙BOSS打法攻略(靈魂潮汐活動瑪蒙) 手動檔換擋技巧(手動檔) 儀表保護箱如何分類及應(yīng)用(儀表保護箱如何分類及應(yīng)用圖片) 羊角梳子和牛角梳子哪個更好(銀梳子和牛角梳哪個好) 進出口貿(mào)易怎么做(外貿(mào)出口流程) kingsoft是什么意思可以刪除嗎(kingsoft可以刪除) 淘寶試用攻略(淘寶試用攻略在哪里看) 嬰兒鬧夜有什么好辦法(嬰兒鬧夜有什么好辦法緩解) 如何重新激活淘寶店鋪及發(fā)布寶貝(如何重新激活淘寶店鋪及發(fā)布寶貝的權(quán)限) 沖鋒衣如何選購全攻略(沖鋒衣購買指南) 藍色生死戀演員表恩熙小時候(藍色生死戀演員表) QQ如何打開電臺隨機播放(QQ音樂怎么開電臺) 如何怎么下載安裝steam平臺(steam平臺游戲安裝教程) 大地保險車險報案電話(大地保險車險怎么樣) 武昌魚清蒸的做法(武昌魚清蒸的做法幾分鐘)
您的位置:首頁 >綜合知識 >

c語言判斷完全平方數(shù)(什么是完全平方數(shù))

導(dǎo)讀 關(guān)于c語言判斷完全平方數(shù),什么是完全平方數(shù)這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!1、(一

關(guān)于c語言判斷完全平方數(shù),什么是完全平方數(shù)這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!

1、(一)完全平方數(shù)的性質(zhì) 一個數(shù)如果是另一個整數(shù)的完全平方,那么我們就稱這個數(shù)為完全平方數(shù),也叫做平方數(shù)。

2、例如: 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,… 觀察這些完全平方數(shù),可以獲得對它們的個位數(shù)、十位數(shù)、數(shù)字和等的規(guī)律性的認識。

3、下面我們來研究完全平方數(shù)的一些常用性質(zhì): 性質(zhì)1:完全平方數(shù)的末位數(shù)只能是0,1,4,5,6,9。

4、 性質(zhì)2:奇數(shù)的平方的個位數(shù)字為奇數(shù),十位數(shù)字為偶數(shù)。

5、 證明 奇數(shù)必為下列五種形式之一: 10a+1, 10a+3, 10a+5, 10a+7, 10a+9 分別平方后,得 (10a+1)=100+20a+1=20a(5a+1)+1 (10a+3)=100+60a+9=20a(5a+3)+9 (10a+5)=100+100a+25=20 (5a+5a+1)+5 (10a+7)=100+140a+49=20 (5a+7a+2)+9 (10a+9)=100+180a+81=20 (5a+9a+4)+1 綜上各種情形可知:奇數(shù)的平方,個位數(shù)字為奇數(shù)1,5,9;十位數(shù)字為偶數(shù)。

6、 性質(zhì)3:如果完全平方數(shù)的十位數(shù)字是奇數(shù),則它的個位數(shù)字一定是6;反之,如果完全平方數(shù)的個位數(shù)字是6,則它的十位數(shù)字一定是奇數(shù)。

7、 證明 已知=10k+6,證明k為奇數(shù)。

8、因為的個位數(shù)為6,所以m的個位數(shù)為4或6,於是可設(shè)m=10n+4或10n+6。

9、則 10k+6=(10n+4)=100+(8n+1)x10+6 或 10k+6=(10n+6)=100+(12n+3)x10+6 即 k=10+8n+1=2(5+4n)+1 或 k=10+12n+3=2(5+6n)+3 ∴ k為奇數(shù)。

10、 推論1:如果一個數(shù)的十位數(shù)字是奇數(shù),而個位數(shù)字不是6,那么這個數(shù)一定不是完全平方數(shù)。

11、 推論2:如果一個完全平方數(shù)的個位數(shù)字不是6,則它的十位數(shù)字是偶數(shù)。

12、 性質(zhì)4:偶數(shù)的平方是4的倍數(shù);奇數(shù)的平方是4的倍數(shù)加1。

13、 這是因為 (2k+1)=4k(k+1)+1 (2k)=4 性質(zhì)5:奇數(shù)的平方是8n+1型;偶數(shù)的平方為8n或8n+4型。

14、 在性質(zhì)4的證明中,由k(k+1)一定為偶數(shù)可得到(2k+1)是8n+1型的數(shù);由為奇數(shù)或偶數(shù)可得(2k)為8n型或8n+4型的數(shù)。

15、 性質(zhì)6:平方數(shù)的形式必為下列兩種之一:3k,3k+1。

16、 因為自然數(shù)被3除按余數(shù)的不同可以分為三類:3m,3m+1, 3m+2。

17、平方后,分別得 (3m)=9=3k (3m+1)=9+6m+1=3k+1 (3m+2)=9+12m+4=3k+1 同理可以得到: 性質(zhì)7:不能被5整除的數(shù)的平方為5k±1型,能被5整除的數(shù)的平方為5k型。

18、 性質(zhì)8:平方數(shù)的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。

19、 除了上面關(guān)於個位數(shù),十位數(shù)和余數(shù)的性質(zhì)之外,還可研究完全平方數(shù)各位數(shù)字之和。

20、例如,256它的各位數(shù)字相加為2+5+6=13,13叫做256的各位數(shù)字和。

21、如果再把13的各位數(shù)字相加:1+3=4,4也可以叫做256的各位數(shù)字的和。

22、下面我們提到的一個數(shù)的各位數(shù)字之和是指把它的各位數(shù)字相加,如果得到的數(shù)字之和不是一位數(shù),就把所得的數(shù)字再相加,直到成為一位數(shù)為止。

23、我們可以得到下面的命題: 一個數(shù)的數(shù)字和等於這個數(shù)被9除的余數(shù)。

24、 下面以四位數(shù)為例來說明這個命題。

25、 設(shè)四位數(shù)為,則 = 1000a+100b+10c+d = 999a+99b+9c+(a+b+c+d) = 9(111a+11b+c)+(a+b+c+d) 顯然,a+b+c+d是四位數(shù)被9除的余數(shù)。

26、 對於n位數(shù),也可以仿此法予以證明。

27、 關(guān)於完全平方數(shù)的數(shù)字和有下面的性質(zhì): 性質(zhì)9:完全平方數(shù)的數(shù)字之和只能是0,1,4,7,9。

28、 證明 因為一個整數(shù)被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4這幾種形式,而 (9k)=9(9)+0 (9k±1)=9(9±2k)+1 (9k±2)=9(9±4k)+4 (9k±3)=9(9±6k)+9 (9k±4)=9(9±8k+1)+7 除了以上幾條性質(zhì)以外,還有下列重要性質(zhì): 性質(zhì)10:為完全平方數(shù)的充要條件是b為完全平方數(shù)。

29、 證明 充分性:設(shè)b為平方數(shù),則 ==(ac) 必要性:若為完全平方數(shù),=,則 性質(zhì)11:如果質(zhì)數(shù)p能整除a,但不能整除a,則a不是完全平方數(shù)。

30、 證明 由題設(shè)可知,a有質(zhì)因數(shù)p,但無因數(shù),可知a分解成標準式時,p的次方為1,而完全平方數(shù)分解成標準式時,各質(zhì)因數(shù)的次方均為偶數(shù),可見a不是完全平方數(shù)。

31、 性質(zhì)12:在兩個相鄰的整數(shù)的平方數(shù)之間的所有整數(shù)都不是完全平方數(shù),即若

32、 性質(zhì)13:一個正整數(shù)n是完全平方數(shù)的充分必要條件是n有奇數(shù)個因數(shù)(包括1和n本身)。

33、 (二)重要結(jié)論 1.個位數(shù)是2,3,7,8的整數(shù)一定不是完全平方數(shù); 2.個位數(shù)和十位數(shù)都是奇數(shù)的整數(shù)一定不是完全平方數(shù); 3.個位數(shù)是6,十位數(shù)是偶數(shù)的整數(shù)一定不是完全平方數(shù); 4.形如3n+2型的整數(shù)一定不是完全平方數(shù); 5.形如4n+2和4n+3型的整數(shù)一定不是完全平方數(shù); 6.形如5n±2型的整數(shù)一定不是完全平方數(shù); 7.形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整數(shù)一定不是完全平方數(shù); 8.數(shù)字和是2,3,5,6,8的整數(shù)一定不是完全平方數(shù)。

本文分享完畢,希望對大家有所幫助。

標簽:

免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!

最新文章