關(guān)于高中高一數(shù)學(xué)公式總結(jié)大全,高一數(shù)學(xué)公式大全總結(jié)這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、集合 集合運算: 集合交換律 A∩B=B∩A A∪B=B∪A 集合結(jié)合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) 集合德.摩根律 Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 集合容斥原理 研究集合時會遇有關(guān)集合元素數(shù)問題我們把有限集合A元素數(shù)記card(A)例A={a,b,c}則card(A)=3 card(A∪B)=card(A)+card(B)-card(A∩B) card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些數(shù)列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其 R 表示三角形外接圓半徑 余弦定理 b2=a2+c2-2accosB 注:角B邊a和邊c夾角 弧長公式 l=a*r a圓心角弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 元二次方程解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根與系數(shù)關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式 b2-4ac=0 注:方程有兩相等實根 b2-4ac>0 注:方程有兩等實根 b2-4ac<0 注:方程沒有實根有共軛復(fù)數(shù)根 降冪公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2萬能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 當(dāng)a>0且a≠1時,M>0,N>0: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)當(dāng)a>0且a≠1時,a^x=N x=㏒(a)N對數(shù)函數(shù)常用簡略表達方式:(1)log(a)(b)=log(a)(b) (2)常用對數(shù):lg(b)=log(10)(b) (3)自對數(shù):ln(b)=log(e)(b)。
本文分享完畢,希望對大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!