霽彩華年,因夢(mèng)同行—— 慶祝深圳霽因生物醫(yī)藥轉(zhuǎn)化研究院成立十周年 情緒益生菌PS128助力孤獨(dú)癥治療,權(quán)威研究顯示可顯著改善孤獨(dú)癥癥狀 PARP抑制劑氟唑帕利助力患者從維持治療中獲益,改寫晚期卵巢癌治療格局 新東方智慧教育發(fā)布“東方創(chuàng)科人工智能開發(fā)板2.0” 精準(zhǔn)血型 守護(hù)生命 腸道超聲可用于檢測(cè)兒童炎癥性腸病 迷走神經(jīng)刺激對(duì)抑郁癥有積極治療作用 探索梅尼埃病中 MRI 描述符的性能和最佳組合 自閉癥患者中癡呆癥的患病率增加 超聲波 3D 打印輔助神經(jīng)源性膀胱的骶神經(jīng)調(diào)節(jié) 胃食管反流病患者耳鳴風(fēng)險(xiǎn)增加 間質(zhì)性膀胱炎和膀胱疼痛綜合征的臨床表現(xiàn)不同 研究表明 多語言能力可提高自閉癥兒童的認(rèn)知能力 科學(xué)家揭示人類與小鼠在主要癌癥免疫治療靶點(diǎn)上的驚人差異 利用正確的成像標(biāo)準(zhǔn)改善對(duì)腦癌結(jié)果的預(yù)測(cè) 地中海飲食通過腸道細(xì)菌變化改善記憶力 讓你在 2025 年更健康的 7 種驚人方法 為什么有些人的頭發(fā)和指甲比其他人長得快 物質(zhì)的使用會(huì)改變大腦的結(jié)構(gòu)嗎 飲酒如何影響你的健康 20個(gè)月,3大平臺(tái),300倍!元育生物以全左旋蝦青素引領(lǐng)合成生物新紀(jì)元 從技術(shù)困局到創(chuàng)新錨點(diǎn),天與帶來了一場屬于養(yǎng)老的“情緒共振” “華潤系”大動(dòng)作落槌!昆藥集團(tuán)完成收購華潤圣火 十七載“冬至滋補(bǔ)節(jié)”,東阿阿膠將品牌營銷推向新高峰 150個(gè)國家承認(rèn)巴勒斯坦國意味著什么 中國海警對(duì)非法闖仁愛礁海域菲船只采取管制措施 國家四級(jí)救災(zāi)應(yīng)急響應(yīng)啟動(dòng) 涉及福建、廣東 女生查分查出608分后,上演取得理想成績“三件套” 多吃紅色的櫻桃能補(bǔ)鐵、補(bǔ)血? 中國代表三次回?fù)裘婪焦糁肛?zé) 探索精神健康前沿|情緒益生菌PS128閃耀寧波醫(yī)學(xué)盛會(huì),彰顯科研實(shí)力 圣美生物:以科技之光,引領(lǐng)肺癌早篩早診新時(shí)代 神經(jīng)干細(xì)胞移植有望治療慢性脊髓損傷 一種簡單的血漿生物標(biāo)志物可以預(yù)測(cè)患有肥胖癥青少年的肝纖維化 嬰兒的心跳可能是他們說出第一句話的關(guān)鍵 研究發(fā)現(xiàn)基因檢測(cè)正成為主流 血液測(cè)試顯示心臟存在排斥風(fēng)險(xiǎn) 無需提供組織樣本 假體材料有助于減少靜脈導(dǎo)管感染 研究發(fā)現(xiàn)團(tuán)隊(duì)運(yùn)動(dòng)對(duì)孩子的大腦有很大幫助 研究人員開發(fā)出診斷 治療心肌炎的決策途徑 兩項(xiàng)研究評(píng)估了醫(yī)療保健領(lǐng)域人工智能工具的發(fā)展 利用女子籃球隊(duì)探索足部生物力學(xué) 抑制前列腺癌細(xì)胞:雄激素受體可以改變前列腺的正常生長 肽抗原上的反應(yīng)性半胱氨酸可能開啟新的癌癥免疫治療可能性 研究人員發(fā)現(xiàn)新基因療法可以緩解慢性疼痛 研究人員揭示 tisa-cel 療法治療復(fù)發(fā)或難治性 B 細(xì)胞淋巴瘤的風(fēng)險(xiǎn) 適量飲酒可降低高危人群罹患嚴(yán)重心血管疾病的風(fēng)險(xiǎn) STIF科創(chuàng)節(jié)揭曉獎(jiǎng)項(xiàng),新東方智慧教育榮膺雙料殊榮 中科美菱發(fā)布2025年產(chǎn)品戰(zhàn)略布局!技術(shù)方向支撐產(chǎn)品生態(tài)縱深! 從雪域高原到用戶口碑 —— 復(fù)方塞隆膠囊的品質(zhì)之旅
您的位置:首頁 >綜合精選 >

線性代數(shù)是什么

線性代數(shù)(Linear Algebra)是數(shù)學(xué)的一個(gè)分支,它的研究對(duì)象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現(xiàn)代數(shù)學(xué)的一個(gè)重要課題;因而,線性代數(shù)被廣泛地應(yīng)用于抽象代數(shù)和泛函分析中;通過解析幾何,線性代數(shù)得以被具體表示。線性代數(shù)的理論已被泛化為算子理論。由于科學(xué)研究中的非線性模型通??梢员唤茷榫€性模型,使得線性代數(shù)被廣泛地應(yīng)用于自然科學(xué)和社會(huì)科學(xué)中。 由于費(fèi)馬和笛卡兒的工作,線性代數(shù)基本上出現(xiàn)于十七世紀(jì)。直到十八世紀(jì)末,線性代數(shù)的領(lǐng)域還只限于平面與空間。十九世紀(jì)上半葉才完成了到n維向量空間的過渡 矩陣論始于凱萊,在十九世紀(jì)下半葉,因若當(dāng)?shù)墓ぷ鞫_(dá)到了它的頂點(diǎn).1888年,皮亞諾以公理的方式定義了有限維或無限維向量空間。托普利茨將線性代數(shù)的主要定理推廣到任意體上的最一般的向量空間中.線性映射的概念在大多數(shù)情況下能夠擺脫矩陣計(jì)算而引導(dǎo)到固有的推理,即是說不依賴于基的選擇。不用交換體而用未必交換之體或環(huán)作為算子之定義域,這就引向模的概念,這一概念很顯著地推廣了向量空間的理論和重新整理了十九世紀(jì)所研究過的情況。 “代數(shù)”這一個(gè)詞在我國出現(xiàn)較晚,在清代時(shí)才傳入中國,當(dāng)時(shí)被人們譯成“阿爾熱巴拉”,直到1859年,清代著名的數(shù)學(xué)家、翻譯家李善蘭才將它翻譯成為“代數(shù)學(xué)”,一直沿用至今。 線性代數(shù)起源于對(duì)二維和三維直角坐標(biāo)系的研究。 在這里,一個(gè)向量是一個(gè)有方向的線段,由長度和方向同時(shí)表示。這樣向量可以用來表示物理量,比如力,也可以和標(biāo)量做加法和乘法。這就是實(shí)數(shù)向量空間的第一個(gè)例子。 現(xiàn)代線性代數(shù)已經(jīng)擴(kuò)展到研究任意或無限維空間。一個(gè)維數(shù)為 n 的向量空間叫做 n 維空間。在二維和三維空間中大多數(shù)有用的結(jié)論可以擴(kuò)展到這些高維空間。盡管許多人不容易想象 n 維空間中的向量,這樣的向量(即 n 元組)用來表示數(shù)據(jù)非常有效。由于作為 n 元組,向量是 n 個(gè)元素的“有序”列表,大多數(shù)人可以在這種框架中有效地概括和操縱數(shù)據(jù)。比如,在經(jīng)濟(jì)學(xué)中可以使用 8 維向量來表示 8 個(gè)國家的國民生產(chǎn)總值(GNP)。當(dāng)所有國家的順序排定之后,比如 (中國, 美國, 英國, 法國, 德國, 西班牙, 印度, 澳大利亞),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 顯示這些國家某一年各自的 GNP。這里,每個(gè)國家的 GNP 都在各自的位置上。 作為證明定理而使用的純抽象概念,向量空間(線性空間)屬于抽象代數(shù)的一部分,而且已經(jīng)非常好地融入了這個(gè)領(lǐng)域。一些顯著的例子有: 不可逆線性映射或矩陣的群,向量空間的線性映射的環(huán)。 線性代數(shù)也在數(shù)學(xué)分析中扮演重要角色,特別在 向量分析中描述高階導(dǎo)數(shù),研究張量積和可交換映射等領(lǐng)域。 向量空間是在域上定義的,比如實(shí)數(shù)域或復(fù)數(shù)域。線性算子將線性空間的元素映射到另一個(gè)線性空間(也可以是同一個(gè)線性空間),保持向量空間上加法和標(biāo)量乘法的一致性。所有這種變換組成的集合本身也是一個(gè)向量空間。如果一個(gè)線性空間的基是確定的,所有線性變換都可以表示為一個(gè)數(shù)表,稱為矩陣。對(duì)矩陣性質(zhì)和矩陣算法的深入研究(包括行列式和特征向量)也被認(rèn)為是線性代數(shù)的一部分。 我們可以簡單地說數(shù)學(xué)中的線性問題——-那些表現(xiàn)出線性的問題——是最容易被解決的。比如微分學(xué)研究很多函數(shù)線性近似的問題。 在實(shí)踐中與非線性問題的差異是很重要的。 線性代數(shù)方法是指使用線性觀點(diǎn)看待問題,并用線性代數(shù)的語言描述它、解決它(必要時(shí)可使用矩陣運(yùn)算)的方法。這是數(shù)學(xué)與工程學(xué)中最主要的應(yīng)用之一。

標(biāo)簽:

免責(zé)聲明:本文由用戶上傳,與本網(wǎng)站立場無關(guān)。財(cái)經(jīng)信息僅供讀者參考,并不構(gòu)成投資建議。投資者據(jù)此操作,風(fēng)險(xiǎn)自擔(dān)。 如有侵權(quán)請(qǐng)聯(lián)系刪除!

最新文章